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Structure determination from screw-disordered fibres 
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Fibre diffraction analysis has traditionally used x-
ray data from either noncrystalline or polycrystalline
fibres.  In some cases however, only data from
specimens with intermediate ordering are available.
A simple method for incorporating the effects of
screw-disorder into structure determination, using a
conventional refinement program, is described.  The
method is applied to diffraction data from a screw-
disordered polynucleotide fibre.

Introduction

The degree of order in oriented specimens used for x-
ray fibre diffraction analysis varies greatly.  In a
noncrystalline fibre, the diffracting particles are
randomly rotated about the axis of orientation, and
the diffraction pattern shows continuous intensity on
layer lines. In a polycrystalline fibre, the molecules
form small, well-ordered crystallites that are
randomly rotated, and the diffraction pattern consists
of discrete Bragg reflections.  It is therefore
straightforward to calculate the intensity diffracted
by models of noncrystalline and polycrystalline fibre
specimens, and for this reason, almost all polymer
structures so far determined by x-ray fibre diffraction
analysis have utilized one of these two kinds of
specimen [1,2].

It is not uncommon, however, for fibres to give
diffraction patterns that display both sharp
reflections and continuous intensity on layer lines [3-
6], indicating that the packing of the molecules is
neither ideally noncrystalline nor ideally
polycrystalline.  In fact, a spectrum of such
disordered fibres has been observed [3,4].  The
Bragg reflections are often confined to the centre of
the diffraction pattern, giving way to continuous
intensities at high resolution, indicating that the
packing of the molecules in the crystallites is
disordered in some way.  The diffraction pattern
recorded from such a specimen depends not only on
the molecular and crystal structures, but also on the

type and degree of disorder in the specimen.  If the
disorder is uncorrelated, then the diffraction can be
separated into the sum of continuous and Bragg
components.  These components have the same
general character as those from noncrystalline and
polycrystalline specimens, but are different in detail.  

Disordered fibres have generally not been used for
structure determination because of the difficulty of
calculating the diffraction from such specimens and
of refinement. In cases where they have, an
approximate method has been used in which
molecular and crystal structures are co-refined
against the continuous and Bragg diffraction, treating
the continuous intensity data as if they are from a
noncrystalline fibre, and the low resolution Bragg
data as if they are from an ideal polycrystalline fibre
[7,8].  Such an analysis is only approximately valid
however, since it ignores the effects of the disorder
on the diffracted intensities.  Stroud and Millane
[5,6] have recently reported a comprehensive
analysis of diffraction by fibres that contain various
kinds of  packing disorder, and  use of this theory
allows the possibility of determining structures from
these kinds of specimens while rigorously
incorporating the effects of the disorder.  We describe
here a method for implementing such an approach
and its application to diffraction data from a screw-
disordered polynucleotide fibre.

There are two reasons for pursuing structural
analysis of molecules in disordered fibres.  First,
some biopolymers pack only as disordered fibres, so
that this is the only route by which structural
information can be obtained.  Second, since the
disorder produces an averaging of the effects of
specific intermolecular interactions (that are present
in a polycrystalline fibre), structures in disordered
fibres are more likely to  represent intrinsic
molecular structures free of these intermolecular
effects.
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Diffraction by fibres

The intensity diffracted by a noncrystalline fibre at
cylindrical polar radius R on layer line l is given by

(1)

where the Gnl(R) are the Fourier-Bessel structure
factors and the sum is over the integers that satisfy
the helix selection rule.  In structure determination
from such a specimen, molecular models are refined
against the data Il(R).  For a polycrystalline fibre,
assuming a monoclinic unit cell with c parallel to the
rotation axis, the intensity of the i-th spot on the l-th
layer line, Iil, is given by 

where the Fhkl are the usual crystallographic
structure factors, and the sum is over the reciprocal
lattice points (hikil) that overlap in the spot (i,l).  The
structure factors can be calculated in the usual way,
or in terms of the Fourier-Bessel structure factors as

where (Ri,ψhiki,l/c) are the cylindrical polar
coordinates of the reciprocal lattice point (hikil).  In
structure determination from such specimens,
molecular and crystal structures are refined against
the data Iil.

The packing disorder in the microcrystallites of
disordered polycrystalline fibres is conveniently
described in terms of lattice disorder and substitution
disorder [5]. Lattice disorder is due only to
deviations in the positions of the molecules away
from their positions on a regular undistorted lattice.
Substitution disorder is due to variations in the
orientation of the molecule (or in the kind of
molecule) at each site.  If the lattice and substitution
disorders are independent, and the distortions at
different lattice points are uncorrelated, then the
diffraction can be separated into the sum of
continuous and Bragg components [5].  If the
Cartesian components of the lattice disorder are
independent, and the x and y components have equal
variances, then general expressions have been
derived for the continuous and Bragg diffraction in
terms of the statistics of the disorder [5].

We consider here the case of screw disorder (a form
of substitution disorder) that is quite common with
molecules of high helix symmetry (such as
polynucleotides). Screw disorder occurs when the
helical molecules in a crystallite randomly "screw in
and out" of a plane normal to the rotation axis, as a
result of rigid body motion constrained by the
interlocking of grooves and protuberances of
neighbouring molecules.  If the screw disorder is
completely random, its symmetry is the same as the
molecular helix symmetry (as would usually be
expected), and the molecular helix is integral (one
helix turn in one c-repeat), then the continuous and
Bragg components of the diffraction are given by
[4,5]

and

The lattice disorder weight wlattice(R,Z) is given by 

Figure 1: Fiber diffraction pattern from a-poly(dA)·poly(dT)
(from Ref. 11)
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where σlat
2 and σaxial

2 are the variances of the
distortions of the lattice sites normal (or "lateral")
and parallel (or "axial") to the direction of
orientation, respectively, Nil is the number of
overlapping reflections in spot (i,l), and the
superscript (sd) denotes "screw-disordered."  (Note
that the term Z2σ2

axial is missing in equations (75)
and (76) of Ref. 5).

Structure determination incorporating the effects
of disorder

Structure determination using data from disordered
fibres in general requires optimisation of molecular
and disorder parameters to obtain the best match
between the calculated and measured diffraction.
For the case of screw disorder however, the
simplicity of the expressions (4) and (5) allows a
simple refinement protocol to be developed based on
use of a conventional fibre refinement program such
as LALS [9], that rigorously incorporates the effects
of the disorder.  This is the approach we have taken.
In many cases, most of the available data (and all the
high resolution data) are continuous, and the

Figure 2: Observed x-ray amplitudes in the resolution range ~6-3Å (circles), and in the resolution range ~8-6 Å (squares).
Amplitudes calculated from refined models based on screw-disordered (---) and noncrystalline (- - -) fibres.
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refinement scheme we describe is based on using the
continuous data.  The approach is to iteratively
modify the data to "take out" the effect of the
disorder, allowing refinement based on a
noncrystalline fibre.  This is done as follows.  

1. Obtain an initial estimate of the structure using
conventional methods based on the continuous 
data and assuming a noncrystalline specimen.

2. Select values of σlat and σaxial .

3. Using the current estimate of the molecular 
structure, calculate the continuous diffracted 
amplitudes [Il(R)]1/2 and |Gll(R)|.

4. Compute a modified data set, denoted by 
[Îl

obs(R)]1/2 , as

Îl
obs(R) = Il

obs(R) + K2 |Gll(R)|2 wlattice(R,l/c),

where Il
obs(R) is the continuous observed 

intensity data and K is the scale factor (i.e. 
[Il

obs(R)]1/2 is scaled to K[Il
calc(R)]1/2).  The 

modified data [Îl
obs(R)]1/2 represents the 

continuous data that would be observed if the 
specimen were perfectly noncrystalline, based 
on the current estimate of the molecular 
structure. 

5. Refine the molecular structure against 
[Îl

obs(R)]1/2, treating it as if the specimen were 
noncrystalline.

6. If step 5 results in no significant change in the 
x-ray agreement then stop, otherwise return to 
step 3.

Figure 3: Structures of a-poly(dA)·poly(dT) viewed normal and parallel to the helix axis, determined as described here
incorporating the effects of the screw disorder (left), and as determined in Ref. 8  (right).
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The procedure is repeated for a set of values of σlat

and σaxial to find those that give the best agreement.
A model consistent with the continuous x-ray data
and incorporating the effect of the disorder is then
obtained.  

Application to αα-poly(dA)·poly(dT)

The polynucleotide duplex poly(dA)·poly(dT) has
been trapped in both polycrystalline and screw-
disordered fibres.  Structure determination based on
x-ray data from these different allomorphs shows
conservation of the overall molecular morphology,
and this system therefore provides an ideal test-bed
for the method described above.

Poly(dA).poly(dT) has been trapped in three distinct

forms in oriented fibres.  Two of these are
polycrystalline, one with one molecule per unit cell
(the β1-form) [10], and the other with two molecules
per unit cell (the β2-form) [11,12].  Structure
determination for the two β forms shows that the
overall molecular structures are quite similar in the
two allomorphs [10,12].  The two strands of the
double helix are similar, but are different enough
conformationally to give a duplex morphology
distinct from that of classical B-DNA.  The third
form of poly(dA)·poly(dT), denoted the α-form [11],
gives a diffraction pattern that contains sharp Bragg
reflections at low resolution, that give way to
continuous diffraction at higher resolution (Figure
1).  Park et al. [8] analysed the structure of  α-
poly(dA)·poly(dT) using the continuous x-ray data
between approximately 6 and 3Å resolution, and the
low resolution Bragg data.  In this analysis, it was
assumed that the continuous diffraction at a
resolution greater than ~6Å is due to a perfectly
noncrystalline specimen, and that the sharp Bragg
reflections at a resolution of less than ~6Å are due to
a perfectly polycrystalline specimen.  This approach
was based on the reasonable assumption that the
Bessel term Gll(R) which is eliminated by the screw
disorder (in the absence of lattice disorder) would
have a relatively small amplitude at resolutions
greater than 6Å, so that its inclusion in  the
calculation would introduce only a small error.
However, such an approach does involve an
approximation, and it also imposes the restriction of
having to exclude data with spacings > 6Å.  We
therefore applied the algorithm described above to
the continuous diffraction data from α-

poly(dA)·poly(dT).

A survey of different disorder models for α-
poly(dA)·poly(dT) by Stroud & Millane [13]
confirmed that the diffraction data are best explained
by a specimen in which the molecules in the
crystallites are randomly screw disordered, and also
indicated that the lattice is subject to small lateral and
axial distortions.  Referring to (4), and considering
the behaviour of the Bessel functions and the
function w(R,Z), the disorder is expected to affect the
diffraction primarily at medium resolution.  We
therefore conducted two sets of refinements, one
using the original diffraction data in the resolution
range 6-3Å, and one using data in the region 8-3Å.
The medium (8-6Å) resolution continuous data were
measured only where there was no interference by
Bragg sampling.  The structure was refined
conventionally against the continuous data using
each data set.  It was also refined, incorporating the
effects of the disorder, by using the algorithm
described above, for a range of values of σlat and
σaxial, and using both data sets.  The algorithm
converged within four cycles in all cases, and the
best agreement was obtained for σlat ≈ σaxial ≈ 0.2Å.
The results of the refinements are listed in Table 1.
Referring to the table shows that for the case of data
in the range 6-3Å, although the x-ray agreement is
slightly better for the refinement based on the screw-
disordered model than for that based on the
noncrystalline model, the differences are quite small.
This is not particularly surprising, and validates the
approach taken by  Park et al. [8], showing that the
particular x-ray data they used are indeed relatively
insensitive to the disorder as described above.
However, the approach is not completely satisfactory
since it does not allow one to make use of all the
available diffraction data, and in the presence of
lattice disorder the term |Gll(R)| does contribute to
the continuous diffracted intensity.  The results
obtained using data in the range 8-3Å show why Park
et al. [8] had to use the restricted data set.
Significantly better agreement is obtained for a
refinement based on a screw-disordered specimen
than for one based on a noncrystalline specimen
(Table 1).  With the new algorithm, very good
agreement (R" = 0.23) is obtained with many more
diffraction data (182 vs. 152) and addition of only
one parameter.  (We set σlat = σaxial since releasing
this constraint did not lead to significantly better
agreement).  As expected, a poor fit with the larger x-
ray data set is obtained (R" = 0.39) if the effect of the
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disorder is not incorporated.  The agreement between
the measured and calculated amplitudes is shown in
Figure 2.  The fit of the final model to the Bragg data
was assessed by refining only the scale factor while
fitting [Iil

(sd)]1/2 to the Bragg data [Iil
obs]1/2 .  This

gave R = 0.21 and R'' = 0.23 for the Bragg data.  The
backbone conformation angles of the structure
obtained are similar to those of the previously
determined a structure, and the β1 and β2 structures.
Differences between the α structures are generally
no larger than the differences amongst the original α
structure and the β structures.  This is can be seen by
comparison of the molecular structure obtained here
with that of Ref. 8 (Figure 3).

Discussion

Polymer and other biomolecular structures so far
determined by x-ray fibre diffraction analysis have
almost always utilized diffraction data from either
noncrystalline or polycrystalline specimens.  In the
few cases where data from specimens with
intermediate ordering have been used, the disorder
has been only approximately taken into account.
Explicit treatment of the effects of the disorder
allows use of the full set of available diffraction data,
and leads to a more rigorous, accurate and
satisfactory structure determination.  Application of
the method described here for the case of screw-
disorder leads to a structure that is within the
conformational domain defined by the other crystal
forms and gives good x-ray agreement against a
larger data set. This lends support to the validity of
the approach. For this particular example, the
advantages of this approach are relatively small,
since the increase in the number of data that it allows
is rather modest. However, this will not always be
the case.  In cases where the disorder affects most, or
all, of the diffraction data, using an approach of this
kind will be necessary for accurate structure
determination.
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Science Foundation for support (DBI-9722862).
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Resolution range
of data (Å)

6 - 3
6 - 3
8 - 3
8 - 3

Screw
disordered

N
Y
N
Y

R

0.25
0.22
0.32
0.20

R”

0.28
0.26
0.39
0.23

Table 1: Conventional (R) and quadratic (R'') crystallographic
R-factors for the continuous diffraction for various models as
described in the text




